Back

过程自动化解决方案业务 工程研发类 数据挖掘工程师 上海/西安

Job Description

DI PA OEC E&E Data Mining Engineer
西门子中国有限公司 过程自动化解决方案业务 工程研发类 数据挖掘工程师
We are currently looking for Data Mining Engineer for DI PA OEC E&E.

What are my responsibilities?
主要职责:
• You solve business problems with machine learning methods, signal processing, optimization methods, image processing and relevant techniques and create data analytics solutions in a product mindset based on business requirements
你需要通过机器学习方法、信号处理、优化方法、图像处理及相关技术来解决业务问题并创造数据分析解决方案产品。
• You design, apply and implement robust data driven algorithms in industrial use case
你需要在工业场景下设计、应用和实现鲁棒的数据驱动算法
• You combine signal processing, machine learning and knowledge based methods in order to realize i.e. anomaly detection, fault classification, diagnosis and prognosis
你需要结合信号处理、机器学习和知识经验方法等来实现诸如异常侦测、故障分类、诊断和预报
• You extract industry feature in industry environment, define and iterate machine learning model according to requirements feature of industrial user and finally form as product.
你需要总结工业背景中的行业特性,制定和迭代针对行业用户需求特点的机器学习模型,形成产品
• In an agile process you closely work together with software engineers and domain experts in order to develop data analytics solutions for process industry and engineering
在敏捷开发的流程中与软件开发工程师和行业专家一起紧密合作来实现流程工业中的数据分析解决方案产品
• Enhance internal operation efficiency with LEAN or machine learning methodology.
通过精益或者机器学习等方法提升内部工程运营效率
• Responsible for data or lean relevant project and product management.
负责数据和精益项目和产品相关的管理
What do I need to qualify for this job?

要求:
• You hold a degree (Bachelor, Master or PhD) in computer science, (applied) mathematics, physics or engineering (ideally with a focus on machine learning)
你具有在计算机科学、(应用)数学、物理或工程(最好针对机器学习)的学历(本科、硕士或博士研究生)
• You have several years of professional experience in the field of data science, machine learning or statistics
你具备若干年从事数据科学、机器学习或统计学的专业经验
• You have extensive knowledge in data mining processes, signal processing, image processing, time series analysis, simulation or related fields
你具备广博的数据挖掘流程、信号处理、图像处理、时间序列分析、仿真和相关领域的知识
• You have experience in one or more of the following data analytics frameworks or libraries and programming (i.e. KNIME, Python, R, Anaconda, Scikit-Learn, Tensorflow, Java)
你具备一项或多项数据分析框架、库和程序实现的经验(KNIME, Python, R, Anaconda, Scikit-Learn, Tensorflow, Java)
• Ideally, you have knowledge or experience with LEAN in manufacture or engineering management.
你最好具备生产线或工程管理的精益知识或经验
• You’d better to have experience of software/app development individually, mindset and knowledge on both backend and frontend software development
你最好具备软件或应用的独立开发能力,对软件开发后端和前端都具备良好思维和设计能力
• Self driven spirit and proven record in innovative thinking and problem solving
自我驱动的工作方式和精神。可证实的创新思维和问题导向的思维品质。
• You have a strong interest within apps and digitalization especially in industrial environment
你对工业背景下的应用和数字化充满兴趣
• You preferably have background know-how about process (e.g. Chemical, Pharma, Food, Beverage, Water, etc.) and control (e.g. SCADA, PLC, DCS, MES, etc.) within the process automation industry and learn fast
你最好在过程自动化领域的工艺(化工、制药、视频、饮料、水等)和控制(SCADA, PLC, DCS, MES等)有一些认识和理解并且具备快速学习的能力
• Good communication skills and team spirit. Project management skills are plus.
良好的沟通能力和团队协作。有项目管理经验的更好。
• You are proficient in English
你具有出色的英语口头和书面表达能力

What can I get from this job?
• Deep understanding on industrial use cases with immersing learning
对于工业场景的沉浸式深度理解
• Deep understanding on engineering use cases with immersing learning
对于工程项目的核心的沉浸式深度理解
• Benefit from both abundant resources within big Siemens and agile development within small “startup” team
享受大公司丰富的资源和小团队敏捷开发的优势
• Good team environment and comfortable working mood
良好的团队氛围和舒心的工作情绪
• Fast enhancement of leadership by integrated experience from product promotion end to product development end
从产品推广到产品研发端到端的一体化实施快速提升领导力
• Wide career development opportunities in new business and competitive income
新业务中的广阔的职业发展机会和有竞争力的回报


Organization: Digital Industries

Company: Siemens Ltd., China

Experience Level: Early Professional

Full / Part time: Full-time

Can't find what you are looking for?